#### Chemical exchange

 $A \rightleftharpoons^{k_1}_{k_{-1}} B$ 

- Reversible unimolecular reaction, A <=> B, e.g.:
  - folded <=> unfolded
  - open <=> closed
  - trans <=> gauche
  - aromatic ring flips
- Binding reactions will be considered later

#### Exchange vs the 'NMR timescale'

- Central concept in understanding all exchange phenomena:
- How fast is exchange *RELATIVE* to some NMR process?

# Chemical exchange

Chris Waudby

c.waudby@ucl.ac.uk

#### Characterising two-site exchange

$$\begin{array}{ll} k_{1} & \tau_{A} \equiv 1/k_{1} \\ A \rightleftharpoons B \\ k_{-1} & \tau_{B} = 1/k_{-1} \\ k_{ex} = k_{1} + k_{-1} \\ \tau_{ex} = \frac{1}{k_{1} + k_{-1}} = 1/k_{ex} \\ \end{array} \qquad \begin{array}{ll} \tau_{A} = 1/k_{1} \\ \tau_{B} = 1/k_{-1} \\ p_{A} = \frac{k_{-1}}{k_{1} + k_{-1}} \\ p_{B} = \frac{k_{1}}{k_{1} + k_{-1}} \\ p_{A} + p_{B} = 1 \end{array}$$

- Two-site exchange is fully characterised by two parameters:
- 1 x thermodynamic (i.e. position of equilibrium)
- 1 x kinetic (i.e. timescale or rate constant)

#### NMR timescales



- Chemical shift:  $\Delta \omega$
- Transverse relaxation (linewidth):  $\Delta R_2$
- Scalar coupling:  $\Delta J$
- Note units all in Hz
  - chemical shifts must be converted to frequencies to calculate  $\Delta \omega$

#### Effect of exchange rate



- Exchange between  $\omega_{\text{A}}$  and  $\omega_{\text{B}}$
- Coalescence when  $k_{\text{ex}} = \pi \Delta v / \sqrt{2}$

# Exchange regimes

|                         | slow                       | intermediate                | fast                       |
|-------------------------|----------------------------|-----------------------------|----------------------------|
| chemical<br>shift       | $k_{ex} \ll \Delta \omega$ | $k_{ex} \sim \Delta \omega$ | $k_{ex} \gg \Delta \omega$ |
| tranverse<br>relaxation | $k_{ex} \ll \Delta R_2$    | $k_{ex} \sim \Delta R_2$    | $k_{ex} \gg \Delta R_2$    |
| scalar<br>coupling      | $k_{ex} \ll \Delta J$      | $k_{ex}\sim \Delta J$       | $k_{ex} \gg \Delta J$      |

#### Modulating the exchange regime



- Increasing temperature accelerates reaction, shifting towards fast EX
  – assuming populations don't change significantly
- Increasing  $B_0$  increases  $\Delta \omega$  and shifts towards slower exchange

#### Fast vs slow exchange

- Fast exchange:
  - single resonance at shift  $\delta = p_A \delta_A + p_B \delta_B$ (population weighted average)
  - average shift / linewidth / coupling etc.
- Slow exchange:
  - two resonances
  - separate shifts / linewidths / couplings etc.
- Intermediate exchange:
  - Usually broadened to point of unobservability

### Fast intermediate exchange

- Fast-intermediate exchange:
  - $k_{ex} > \Delta \omega$  (but not much greater)
  - single resonance at shift  $\delta = p_A \delta_A + p_B \delta_B$ (population weighted average)
  - some additional line broadening
- 'Exchange contribution' to *R*<sub>2</sub>:
  - $R_{\rm ex} = p_{\rm A} p_{\rm B} \Delta \omega^2 / k_{\rm ex} = (p_{\rm A} p_{\rm B} \Delta \omega^2) \tau_{\rm ex}$
  - cf. adiabatic local field relaxation,  $R_2 = \langle B_{loc}^2 \rangle J(0)$
  - $R_{\rm ex} \propto {\rm B_0}^2$

# Slow intermediate exchange

- Slow-intermediate exchange:
  - $k_{ex} < \Delta \omega$  (but not much less)
  - two resonances close to original positions
  - some additional line broadening
- 'Lifetime broadening' contribution to R<sub>2</sub>:
  - $\Delta R_{2,A} = k_1$
  - $\Delta R_{2,B} = k_{-1}$
- Important consequence: hard to observe minor species
- $\Delta R_2$  not dependent on B<sub>0</sub>

#### Asymmetric exchange



- Slow exchange: minor peak broadening much more significant
- Fast exchange: population weighted peak position heavily biased towards major state chemical shift

# Scalar coupling exchange



# Transverse relaxation exchange

 $R_{2,obs} = p_A R_{2,A} + p_B R_{2,B} \quad (\Delta R_2 \ll k_{ex})$ 

- In fast EX, observed relaxation rate is population weighted average of individual relaxation rates
- e.g. PREs to probe residual structure in disordered proteins



# Scalar coupling exchange



- Intramolecular exchange e.g. sidechain rotamers
- <sup>3</sup>J<sub>HAHB</sub> dependence on χ<sub>1</sub> angle described by Karplus equation
- Slow exchange: J ≈ 3 and 12 Hz
- Fast exchange: J ≈ (3 + 3 + 12) / 3 ≈ 6 Hz

# Bloch-McConnell equations

- Classical analysis of exchanging systems
- Not strictly appropriate for coupled systems
- Sufficient for analysis in many (most?) cases

## ZZ exchange for analysis of slow exchanging systems (EXSY)



- Introduce a variable delay between measurement of indirect and direct chemical shift dimensions
- Store magnetization longitudinally during delay sensitive to  $\tau_{ex} \leq T_1$
- Reactions occuring (in dynamic equilibrium) during this time give rise to cross-peaks in characteristic square pattern

#### Binding equilibria (bimolecular reactions)



- Exchange involving a bimolecular event (2nd order rate constant) cannot be analysed directly
- From the perspective of the observed nucleus, system is still just in two site exchange between free and bound states
- Calculate pseudo-first order rate constant and equilibrium populations as function of k<sub>on</sub>, k<sub>off</sub> and L<sub>0</sub>

# ZZ exchange for analysis of slow exchanging systems (EXSY)



- Fitting to integrated Bloch-McConnell equations
- Compensation for differential transverse relaxation?

# Binding equilibria (bimolecular reactions)



Determination of binding constants from HSQC chemical shift perturbations



- Chemical shift perturbations give %bound as function of ligand concentration
- Fitting to determine K<sub>d</sub>
- Caution only in very fast EX! Can result in substantial errors!

# Three state exchange

